Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Distributed acoustic sensing (DAS) on submarine fiber-optic cables is providing new observational insights into solid Earth processes and ocean dynamics. However, the availability of offshore dark fibers for long-term deployment remains limited. Simultaneous telecommunication and DAS operating at different wavelengths in the same fiber, termed optical multiplexing, offers one solution. In May 2024, we collected a four-day DAS dataset utilizing an L-band DAS interrogator and multiplexing on the submarine cables of the Ocean Observatory Initiative’s Regional Cabled Array offshore central Oregon. Our findings show that multiplexed DAS has no impact on communications and is unaffected by network traffic. Moreover, the quality of DAS data collected via multiplexing matches that of data obtained from dark fiber. With a machine-learning event detection workflow, we detect 31 T waves and the S wave of one regional earthquake, demonstrating the feasibility of continuous earthquake monitoring using the multiplexed offshore DAS. We also examine ocean waves and ocean-generated seismic noise. We note high-frequency seismic noise modulated by low-frequency ocean swell and hypothesize about its origins. The complete dataset is freely available.more » « lessFree, publicly-accessible full text available February 28, 2026
-
Abstract The use of fiber-optic sensing systems in seismology has exploded in the past decade. Despite an ever-growing library of ground-breaking studies, questions remain about the potential of fiber-optic sensing technologies as tools for advancing if not revolutionizing earthquake-hazards-related research, monitoring, and early warning systems. A working group convened to explore these topics; we comprehensively examined the application of fiber optics in various aspects of earthquake hazards, encompassing earthquake source processes, crustal imaging, data archiving, and technological challenges. There is great potential for fiber-optic systems to advance earthquake monitoring and understanding, but to fully unlock their capabilities requires continued progress in key areas of research and development, including instrument testing and validation, increased dynamic range for applications focused on larger earthquakes, and continued improvement in subsurface and source imaging methods. A key current stumbling block results from the lack of clear data archiving requirements, and we propose an initial strategy that balances data volume requirements with preserving key data for a broad range of future studies. In addition, we demonstrate the potential for fiber-optic sensing to impact monitoring efforts by documenting the data completeness in a number of long-term experiments. Finally, we outline the features of a instrument testing facility that would enable progress toward reliable and standardized distributed acoustic sensing data. Overcoming these current obstacles would facilitate progress in fiber-optic sensing and unlock its potential application to a broad range of earthquake hazard problems.more » « lessFree, publicly-accessible full text available November 7, 2026
-
Abstract With the rise of data volume and computing power, seismological research requires more advanced skills in data processing, numerical methods, and parallel computing. We present the experience of conducting training workshops in various forms of delivery to support the adoption of large-scale high-performance computing (HPC) and cloud computing, advancing seismological research. The seismological foci were on earthquake source parameter estimation in catalogs, forward and adjoint wavefield simulations in 2D and 3D at local, regional, and global scales, earthquake dynamics, ambient noise seismology, and machine learning. This contribution describes the series of workshops delivered as part of research projects, the learning outcomes for participants, and lessons learned by the instructors. Our curriculum was grounded on open and reproducible science, large-scale scientific computing and data mining, and computing infrastructure (access and usage) for HPC and the cloud. We also describe the types of teaching materials that have proven beneficial to the instruction and the sustainability of the program. We propose guidelines to deliver future workshops on these topics.more » « lessFree, publicly-accessible full text available June 5, 2026
-
Abstract Elevated seismic noise for moderate‐size earthquakes recorded at teleseismic distances has limited our ability to see their complexity. We develop a machine‐learning‐based algorithm to separate noise and earthquake signals that overlap in frequency. The multi‐task encoder‐decoder model is built around a kernel pre‐trained on local (e.g., short distances) earthquake data (Yin et al., 2022,https://doi.org/10.1093/gji/ggac290) and is modified by continued learning with high‐quality teleseismic data. We denoise teleseismic P waves of deep Mw5.0+ earthquakes and use the clean P waves to estimate source characteristics with reduced uncertainties of these understudied earthquakes. We find a scaling of moment and duration to beM0 ≃ τ4, and a resulting strong scaling of stress drop and radiated energy with magnitude ( and ). The median radiation efficiency is 5%, a low value compared to crustal earthquakes. Overall, we show that deep earthquakes have weak rupture directivity and few subevents, suggesting a simple model of a circular crack with radial rupture propagation is appropriate. When accounting for their respective scaling with earthquake size, we find no systematic depth variations of duration, stress drop, or radiated energy within the 100–700 km depth range. Our study supports the findings of Poli and Prieto (2016,https://doi.org/10.1002/2016jb013521) with a doubled amount of earthquakes investigated and with earthquakes of lower magnitudes.more » « less
An official website of the United States government
